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ABSTRACT: By means of molecular dynamics simulations we investigate the
response of thin, symmetric diblock copolymer melts under shear in the limit
of strong segregation with nonselective substrates, where vertically oriented
lamellae form. Under small shear perpendicular to the lamellar orientation, we
observe an inclination of the lamellar layers. At a critical shear rate, the lamellar
layers become distorted and, for very large shear, recombine with a new
orientation along the direction of shear. Our simulations are accompanied by a
novel, easily understandable theoretical approach to predict the critical shear
rate, at which the interfaces become distorted and shear-induced reorientation
sets in. This allows one to calculate quantities such as the inclination angle or
the pair interaction energy as a function of applied shear rate. Our results are
relevant for many technical applications, where defect-free, long-range ordered
structures are needed.

Understanding and controlling the microdomain orienta-
tion of self-assembled structures in block copolymer

melts is essential for a variety of applications, such as photonics
and flexible electronics like organic photovoltaics or nano-
lithography.1−4 While the domain size of such self-assembled
structures typically ranges from 10 to 100 nm,5technical
applications need defect-free, long-range ordered structures.6

This can be achieved by external fields such as shear-induced
flow fields.7−9 Thus, it is important to understand thoroughly
the processes involved during shear-driven ordering on a
microscopic level.
In this Letter, we focus on sheared thin films of symmetric

diblock copolymer melts, which are confined by two non-
selective, atomically smooth walls. When the incompatibility
between the two blocks of a copolymer is large enough, the
melt undergoes a phase separation, and lamellar structures
emerge.6 Two basic modes of shear may be considered: along
the lamellar interfaces and perpendicular to them. Obviously,
the latter case is the one of interest, as shear perpendicular to
the interfaces leads to a reorientation of lamellae along the
direction of shear10 and eventually to the desired long-range
ordering.6 By means of molecular dynamics (MD) simulations
of a standard polymer (Kremer−Grest) model,11 we study how
this transition takes place. We propose a theoretical approach
to calculate the critical shear rate, where lamellar layers become
distorted before they can start to reorient. Our predictions for
the inclination angle and the change of surface interaction
energy are in good agreement with the numerical data.
For shear perpendicular to the lamellar interfaces, we find

stationary inclined interfaces below a critical shear rate. Above
the critical rate, the lamellar interfaces dissolve and, at very
large shear rates, reorient along the shear direction, such that
the shear now is directed along the interfaces. In this regime,

both modes of shear (along and perpendicular to the
interfaces) reveal the same response. The focus of the present
study is on the effect of perpendicular shear below the critical
shear rate.
Our numerical approach is well established and has been

used in many studies to model polymers in equilibrium and in
out-of-equilibrium situations.12 In this coarse-grained model,
monomers are represented by spheres, where the excluded
volume interaction is simulated using a cut and shifted
Lennard-Jones (LJ) potential. Upon variation of cutoff range
and interaction strength, it is possible to control the character
of attraction/repulsion between monomers belonging to the
same/different part of the diblocks. The connectivity along a
polymer chain is assured via finitely extensible, nonlinear, elastic
(FENE) springs.11 Using MD simulations, we integrate the
equations of motion with the Velocity−Verlet algorithm.13 The
time step of our simulations is τ = 5 × 10−3. Temperature is
kept constant at kBT = 1 (kB the Boltzmann constant) by a
dissipative-particle-dynamics (DPD) thermostat.13 The latter
allows for tuning the monomeric friction constant. Throughout
this Letter, we use κ = 5 (LJ units) as the damping constant of
the DPD thermostat, unless mentioned otherwise.
The two confining walls each consist of Lennard-Jones

spheres arranged on a square lattice, where the lattice constant
is chosen such that monomers cannot pass through them.
Parallel to the walls, in x- and y-directions, we impose periodic
boundary conditions. Further details about the numerical
model can be found in ref 14.
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Stationary shear is performed by moving the upper wall with
constant velocity va and the lower one with velocity −va in the
x-direction. Since we keep the distance between the walls fixed
at D = 25σ (with σ being the monomer diameter), we apply a
constant shear rate γȧ = 2va/D.
The extensions of the walls in x- (shear-) and y-directions are

Lx = Ly = 50σ. Each diblock contains N = 24 repeating units.
Figure 1 displays snapshots from our MD simulations at

different shear rates. The critical shear rate, at which the

lamellar interfaces become distorted, turns out to be γȧ* ≈
0.006. Below this value, the lamellar interfaces can relax fast
enough and remain intact. When the shear rate exceeds the
critical value, the interfaces become distorted and, for very large
shear rates, align along the direction of shear. The critical shear
rate should be determined by the relaxation rate of the lamellar
interface fluctuations; i.e., it should be the inverse of a time
scale that is characteristic for the interface fluctuations.
The interaction between wall atoms and monomers is

independent of monomer type (nonselective substrates) and
only slightly attractive. Thus, we observe a strong slip motion,
where the monomer layers closest to the walls adopt velocities
below the applied one. For shear along the lamellar interfaces,
the velocity of the outermost monomer layer, v, increases
proportional to the applied shear velocity (see Figure 2a).
When shear is applied perpendicular to the interfaces, the melt
appears to reveal only a very little response below the critical
velocity (or shear rate) (see region (i) in Figure 2a). Above the
critical shear rate, there is a region (ii), where the lamellar
interfaces are distorted. Here, the monomers move consid-
erably. At larger shear velocities, the lamellae are oriented along
the shear direction. Therefore, the data for both shear modes
superimpose in region (iii). In the following, we consider v as
the true (effective) velocity and γ ̇ ≡ 2v/D as the shear rate.
To study the onset of shear-induced long-range ordering, we

focus on regime (i) with shear rates below the critical value.
Here, we can use a simple geometrical argument to calculate
the dependence of lamellar inclination on shear rate. The
inclination follows from a balance between the interfacial
tension force along the shear direction acting on the outermost
polymer layer (the layer closest to the sheared surface) and the
force needed to maintain constant velocity of the substrates, i.e.,
the friction force.

The displacement of the interface position (Figure 2b), Δx,
can be expressed by the strain

γ θ= Δ =x
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where θ denotes the inclination angle. Note that Δx also can be
interpreted as the displacement of a monomer within the
outermost layer,15 such that the time derivative of γ becomes
the shear rate.16

Assuming a straight interface line, the relative change of
surface area can be expressed as

θ
Δ =

−
= −γ ̇S

S

S S

S
1

cos
1

0

0

0 (2)

Here, γ ̇S and S0, respectively, are the surface area with and
without shear (see Figure 2b). To first order in ΔS, this yields
for the change in surface free energy
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On the right hand side of eq 3 we introduced the Flory−
Huggins parameter, χ, to describe the coupling between surface
area and surface tension. We anticipate that there is an
additional contribution to the free energy, resulting from the
deformation of chains during lamellae deformation. However,
for sufficiently large shear rates, this contribution may be
neglected when compared to the change in surface tension.14

The force in shear direction, f S, resulting from lamellar
inclination is related to the change of surface free energy via f S
= dFS/dx = (dFS/dθ)(dθ/dx). Thus, with eqs 1 and 3 we
obtain
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This force has to be balanced by the friction force. The latter
reads f R = γΓ Ḋ/2, with Γ being a model-dependent friction
constant. Finally, we arrive at

θ γ
γ

= ̇
*̇

csin
(5)

with c being a numerical constant and the critical shear rate

Figure 1. Steady-state configurations at different shear rates for shear
perpendicular to the lamellar interfaces (along x-axis). Values indicated
within the brackets are the corresponding applied wall velocities. (a)
and (b) represent structures below the critical shear rate; (c) is at the
critical shear rate; and (d)−(f) are above the critical value. Wall atoms
are transparent, and the two blocks of the copolymers are red and
green spheres, respectively.

Figure 2. (a) Averaged velocity of the outermost layers as a function of
applied wall velocity. (b) Shape of the lamellar interface line without
shear and at small, constant shear rate. Dots are the interface positions
at different times, and the solid line is the time average. Upon shearing,
the interface line is inclined by an angle θ, and the interface position
near the wall is displaced by an amount Δx.
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Equation 5 appears to be in very good agreement with our
simulation data, as can be seen from Figure 3a. We show data

for two monomeric friction constants, κ = 5 (as used in Figures
1 and 2) and κ = 10, introduced via the DPD thermostat.13 To
determine the critical shear rate, we used Γ as a fitting
parameter. The fact that we obtain Γ(κ = 10)/Γ(κ = 5) = 1.21
(instead of 2) indicates that the effective friction constant is not
a linear function of κ. Furthermore, we notice an offset of the
data, which can be explained by the deformation of chains,
when an addition term proportional to (ΔS)2 is included in eq
3.14

The critical inclination angle, at which the lamellar structure
dissolves, is given by θ* = π/4. This value has been reported in
an earlier study.17 Here, we provide a simple argument to
reason it: By definition, the critical shear rate and the
concomitant time scale, identified before as the typical time
scale of interface fluctuations, τ, are related via γ*̇τ = 1. On the
other hand, for the given geometry (Figure 2b), one may
connect the critical shear rate to the critical strain, γ*, via γ*̇ =
γ*/τ, such that the critical strain is unity. With eq 1, this yields a
critical inclination angle of θ* = π/4. Above this value, the
forces along the interface line overcome the perpendicular
forces, and the interface dissolves.
With the critical inclination angle known, it is possible to

determine the numerical constant in eq 5 as c = sin θ*, such
that

θ γ
γ

≈ ̇
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(7)

The straight line in Figure 3a corresponds to a slope of 0.68,
which underestimates the theoretical prediction but bears a
statistical error.
Using eqs 3 and 7, we obtain the change of pair interaction

energy, ΔE, due to inclination
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As Figure 3b shows, we find a nice qualitative agreement with
our simulation data. There is no offset in the data because the
pair interaction energy is independent of chain deformation.
It should be emphasized that we derived our expression for

the critical shear rate [eq 6] without the usage of any polymer-
specific properties, e.g., the degree of polymerization. Material
properties like surface tension, melt viscosity, and monomeric
friction coefficient enter only via the Flory−Huggins parameter
and the effective friction constant.18 Therefore, eq 6 should
hold for nonpolymeric systems as well, provided that the critical
shear rate solely depends on the characteristic time scale for
interface fluctuations. Thus, the presented model may be
applied to somewhat different problems, for instance, oil/water
interfaces.
In conclusion, we present a theoretical model to determine

the critical shear rate, at which lamellar layers of diblock
copolymer melts in thin films under perpendicular shear
become distorted and start to orient along the shear direction.
Following eq 6, we find that this critical shear rate should
increase linearly with temperature and the square root of the
Flory−Huggins parameter. Simultaneously, γ*̇ is predicted to
be inversely proportional to the squared distance between the
surfaces.19 Further studies are needed to test these predictions.
So far, our data from molecular dynamics simulations reveal
good agreement for the inclination angle of the lamellar
interfaces and the pair interaction energy. Since our approach
does not contain any polymer-specific properties, it should be
applicable to similar, nonpolymeric systems as well.
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